Degradation Potential of Protocatechuate 3,4-Dioxygenase from Crude Extract of Stenotrophomonas maltophilia Strain KB2 Immobilized in Calcium Alginate Hydrogels and on Glyoxyl Agarose

نویسندگان

  • Urszula Guzik
  • Katarzyna Hupert-Kocurek
  • Marta Krysiak
  • Danuta Wojcieszyńska
چکیده

Microbial intradiol dioxygenases have been shown to have a great potential for bioremediation; however, their structure is sensitive to various environmental and chemical agents. Immobilization techniques allow for the improvement of enzyme properties. This is the first report on use of glyoxyl agarose and calcium alginate as matrixes for the immobilization of protocatechuate 3,4-dioxygenase. Multipoint attachment of the enzyme to the carrier caused maintenance of its initial activity during the 21 days. Immobilization of dioxygenase in calcium alginate or on glyoxyl agarose resulted in decrease in the optimum temperature by 5 °C and 10 °C, respectively. Entrapment of the enzyme in alginate gel shifted its optimum pH towards high-alkaline pH while immobilization of the enzyme on glyoxyl agarose did not influence pH profile of the enzyme. Protocatechuate 3,4-dioygenase immobilized in calcium alginate showed increased activity towards 2,5-dihydroxybenzoate, caffeic acid, 2,3-dihydroxybenzoate, and 3,5-dihydroxybenzoate. Slightly lower activity of the enzyme was observed after its immobilization on glyoxyl agarose. Entrapment of the enzyme in alginate gel protected it against chelators and aliphatic alcohols while its immobilization on glyoxyl agarose enhanced enzyme resistance to inactivation by metal ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation

A Gram-negative bacterium, designated as strain KB2, was isolated from activated sludge and was found to utilize different aromatic substrates as sole carbon and energy source. On the basis of morphological and physiochemical characteristics and 16S rRNA gene sequence analysis, the isolated strain KB2 was identified as Stenotrophomonas maltophilia. Strain KB2 is from among different Stenotropho...

متن کامل

Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems

Stenotrophomonas maltophilia KB2 is known to produce different enzymes of dioxygenase family. The aim of our studies was to determine activity of these enzymes after induction by benzoic acids in cometabolic systems with nitrophenols. We have shown that under cometabolic conditions KB2 strain degraded 0.25-0.4 mM of nitrophenols after 14 days of incubation. Simultaneously degradation of 3 mM of...

متن کامل

Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2

The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and...

متن کامل

Modulation of FAD-dependent monooxygenase activity from aromatic compounds-degrading Stenotrophomonas maltophilia strain KB2.

The purpose of this study was purification and characterization of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2, enzyme that catabolises phenol and its derivatives through the initial hydroxylation to catechols. The enzyme requires NADH and FAD as a cofactors for activity, catalyses hydroxylation of a wide range of monocyclic phenols, aromatic acids and dihydroxylated deri...

متن کامل

Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols

The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014